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Merger of binary neutron stars of unequal mass in full general relativity
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We present results of three dimensional numerical simulations of the merger of unequal-mass binary neutron
stars in full general relativity. A'-law equation of stat€ = (I"—1)pe is adopted, wher, p, ¢, andl" are the
pressure, rest mass density, specific internal energy, and the adiabatic constant, respectivelyl We takd
the baryon rest-mass rat@,, to be in the range 0.85—1. The typical grid size is (633,633,317)xfor,£). We
improve several implementations since the latest work. In the present code, the radiation reaction of gravita-
tional waves is taken into account with a good accuracy. This fact enables us to follow the coalescence all the
way from the late inspiral phase through the merger phase for which the transition is triggered by the radiation
reaction. It is found that if the total rest mass of the system is more-thkid times of the maximum allowed
rest mass of spherical neutron stars, a black hole is formed after the merger, irrespective of the mass ratios. The
gravitational waveforms and outcomes in the merger of unequal-mass binaries are compared with those in
equal-mass binaries. It is found that the disk mass around the so formed black holes increases with decreasing
rest-mass ratios and decreases with increasing compactness of neutron stars. The merger process and the
gravitational waveforms also depend strongly on the rest-mass ratios even for thearde85—1.
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I. INTRODUCTION hydrodynamic equations have been develop@d1(] and
now such simulations are feasible. In previous papé;8|,
Binary neutron stars such as the Hulse-Taylor binary pulwe focused on the binary neutron stars of equal mass, and
sar[1] adiabatically inspiral as a result of the radiation reac-have found the following resultsi) the final outcomeof
tion of gravitational waves, and eventually merge. In theeither a neutron star or a black hpldepends on the com-
most optimistic scenario, the latest statistical study suggesisactness of each neutron star and on the equation of state.
that such mergers may occur approximately once per yedtven if the total mass of the system-isl.5 times larger than
within a distance of about 30 Mg@]. Even the most con- the maximum allowed rest mass of a spherical star for a
servative scenario predicts an event rate approximately ongiven equation of state, a differentially rotating neutron star
per year within a distance of about 400 M. This implies  supported by a significant centrifugal force may be formed;
that the merger of binary neutron stars is one of the promisii) in the case of neutron star formation, nonspherical oscil-
ing sources for kilometer-size laser interferometric detectorsation modes of the formed neutron star are excited and, as a
such as the Laser Interferometric Gravitational Wave Obsetrresult, gravitational waves with characteristic frequercy
vatory (LIGO), TAMA, GEO600, and VIRGJ3,4]. to 3 kHz are emitted(ii ) in the case of black hole formation,
Interest has also been stimulated by a hypothesis abotie disk mass around the formed black hole is negligible
the central engine of-ray bursts(GRB9 [5]. Recently, it  because the specific angular momentum of all the mass ele-
has been found that many GRBs are of cosmological origirments in equal-mass binary neutron stars is too small and
[5]. In cosmological GRBs, the central sources must supply also because the angular momentum transfer is not effective
large amount of the energy 10° ergs in a very short time  during the merger.
scale(order of milliseconds to minutésMost GRB models So far, all the simulations in general relativity have been
involve a stellar system resulting in a stellar-mass rotatingperformed assuming that two neutron stars are identical
black hole and a massive disk of mas®.1-1My, which  [7,8,11,12, since they are indeed approximately identical in
could supply a large amount of energy by neutrino processehie observed systems of binary neutron sfdi3. For ex-
or by extracting the rotational energy of the black hole.ample, mass ratio of the Hulse-Taylor binary is about 0.963
GRBs may be classified into two classes. One is a long bur$tL4]. However, it seems there is no theoretical reason that
for which the duration of the bursts is longer tharl s and  nature should produce only binary neutron stars of nearly
typically ~10 s, and the other is a short burst for which theequal mass. Allowed mass range of neutron stars may fall in
duration is typically~100 ms. It has been recently sug- a fairly broad range~1 to 2M according to theories of
gested that the merger of binary neutron stars is a possibleeutron star§l5,16. From the theoretical point of view, it is
progenitor to producing short bursts. reasonable and an interesting subject to investigate the
Hydrodynamic simulations employing full general relativ- merger of two unequal-mass neutron stars.
ity provide the best approach for studying the merger of bi- One of the most important findings in the previous works
nary neutron stars. Over the last few years, numerical metH7,8] is that black hole formation is not accompanied by
ods for solving coupled equations of the Einstein anddisks with a large mass. The mass of the disk is found to be
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less than 0.0M . This result suggests that binary neutronwhereg,,,, «, B(Bi= 'yijﬂj), and y;; are the four dimen-
stars of equal mass may not be good progenitors for thsional spacetime metric, the lapse function, the shift vector,
central engine of GRBs. On the other hand, the disk masand the three dimensional spatial metric, respectively. Fol-
may be much larger in the merger of binary neutron stars ofowing [26,23,4, we define the quantities as

unequal mass, because the smaller-mass neutron star would

be tidally disrupted by the more massive primary before con- y=def yij)zelz"’, (2.2
tact and would subsequently form a tidal tail around the pri-
mary in which angular momentum transfer is likely to be ;’ijEe74¢'}’ij , 2.3

efficient to form disks around the central object. In addition,
in association with the change of the merger process, gravi- 1
tational waveforms may be significantly modified. Actually, "AijEe—“fﬁ( Kij— _yin), (2.9
Newtonian and post-Newtonian simulations indicate such 3
significant changegl7-20. ] o ]

From a computational point of view, we have substanWhereKj; is the extrinsic curvature, and its trace. Irlthe
tially improved our implementation for a solution of Einstein Cartesian coordinates adopted in our simulation, ggt(
and hydrodynamic equations from our previous approacihould be unity. In the numerical computatioss, y;; , K,

[7,8]. Primarily, a modified numerical scheme for solving andA,; are evolved in time, instead of; andK;: . Note that
hydrodynamic equations by adopting the so-called highs, intjjices ok, (A1) are raisec{lowelred in t]erms of 3
resolution shock-capturing schenj&0,21] provides better . 1 -~ ] ] 7,
accuracy. The spatial gauge condition is changed from 47ij). HereafterD; and[li are used as covariant derivatives
minimal distortion typg 22,23 to a dynamical one in which with respect toy;; and y;;, respectively. In addition, the

a hyperbolic type equation is adopted for determining the_aplacians are defined @s=D'D; andA=D'D, .

shift vector[24,25. This has resulted in saving a substantial As the matter source of the Einstein equation, a perfect
amount of computation time. Finally, we have modified thefluid is adopted. Then, the energy-momentum tensor is writ-
treatment for the transport terms in the evolution equationsen as

of geometric variables. This improves the accuracies for a

solution of the geometric quantities and for conservation of T..=(p+pe+P)u,u,+Pg,,, (2.5
the total Arnowitt-Deser-MisnefADM) mass and angular
momentum significantly. wherep, &, P, andu, are the baryon rest-mass density, the

The paper is organized as follows. In Sec. Il, we reviewspecific internal energy density, the pressure, and the four-
basic equations, gauge conditions, and methods for settingslocity, respectively. Initial conditions are given using a
initial conditions currently adopted in fully general relativis- polytropic equation of state as
tic simulations of binary neutron star mergers. In Sec. I,
methods used for analysis of gravitational waves are summa-
rized. In Sec. IV, the numerical results are presented, paying P=kp', TI'=1+ o (2.6
particular attention to merger process, disk mass, and gravi-

tational waveforms. Section V is devoted to a summary, here « andn are a polytropic constant and a polytropic

Throughout this paper, we adopt the geometrical units iN,qey puring the time evolution, we adopfalaw equation
which G=c=1 whereG andc are the gravitational constant ¢ iate of the form

and the speed of light. Latin and Greek indices denote spatial
components X,y,z) and space-time componentsx,y,z), P=(I'—1)pe. 2.7
respectively.5;;(= 8") denotes the Kronecker delta.

In the absence of shocks, the polytropic form of the equation

Il. FORMULATION of state is preserved even if EQ.7) is used. Thus the quan-
A. Basic equations tity k'=P/p'[=e/(I'—1)p" ~1] measures the efficiency of
the shock heating. In this paper, we setl (I'=2) as a
reasonable qualitative approximation to moderately stiff
“equations of state for neutron stais).

The hydrodynamic equationgontinuity, Euler, and en-
e?gy equationsare written in the forms

In our numerical simulation, the Einstein and general rela
tivistic hydrodynamic equations are solved without any ap
proximation. The formulation for a numerical solution of
these coupled equations is based on those described in
previous work[8]. However, we have improved several nu-
merical implementation; since then, gnd th_e form of the ba- ap,+i(p,v)=0, 2.9
sic equations adopted in numerical simulation has also been
modified. A summary of the current formulation is, therefore, - in 66 i
in order here. di(pyUj) T di(pyv'uj+Pae®?s )

The line element is written in the form =Pd;(ae?)

ds?’=g,,dx*dx”

A o — py| Whoja— U, B+
=(—a’+ B BN dt+28,dx dt+ ydxX'dx, (2.1) px| WhGje— i

1. Kkl
muku|&jy , (29)
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(P, €)+dilp.ev'+Pe> (v +g]

=aeG¢PK+ ST*aiﬁjKij—p*l]iyiija, (21@

where
Py =pwed?, (2.11
h=1+s+E, (2.12
p

w=au', (2.13
U=huy, (2.14

. eb
eEZTWn”n”zhw— p_w’ (2.15

i_ui_ iv Y a;’ijaj
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(at_ﬁlal)zij:e_‘w 3

1 -~
a( R'] - —e4¢7ij Rkk)

1 -
—(DiDja— 564¢yijAa>

+ a’(K’A” - 2‘A|k’AJ k) + ﬂI’(IAkJ + B{(jhAki
2 .~ 1.
- §:8!<kAij —87W< e s - §7ijskk> ;
(2.21

(= B'o)K=a

~ ~. 1
A AT+ §K2} —Aa+4malpyt+ SN,
(2.22

where §;=T*"y,;v,;. Equations(2.20—(2.22 are solved

to evolvey;; , A;;, andK.
In the previous work$26,23,6—8, the evolution equation
for ¢ is written in the form

1
(=B b= 5 (= aK+B). (2.23

Here, the conservative form of the energy equation is

adopted in contrast with the previous wofks8]. In numeri-
cal simulations, Eqs(2.8)—(2.10 are solved to evolve, ,

U, ande. Onceu; is obtained,w is determined from the

normalization relation of the four-velocityuu,=—1,
which can be written as

e p|? -
W"‘W , (217

W2:1+ ’yijUin:1+ ’y”l],f]l

whereP and p are related to, , e, andw asP=P(p,¢)
=P[p, /[(we*?),e] andp=p, /(we®?).

The Einstein equation is split into the constraint and evo-
lution equations. The Hamiltonian and momentum constraint

equations are written in the form

5
Ay= ?Rkk—zwpwt %(K”Z” - §K2> , (218

[ 6AI 2 61 6
Bi(yoA' )~ 5 v°D K =8m3;4", (2.19

where y=e?, p,=T#"n,n,, andJ;=—T*"n,y,; with n,

=(—a,0). Here,R;; (~Rij) denotes the Ricci tensor with re-

spect toy;; (%), andR =R;; ¥} (RE=R;;7)). These con-
straint equations are solved onlytat 0 to set initial condi-

tions (see Sec. lIDand fort>0, they are used to monitor

the accuracy of numerical solutions.

Following [26,23,6—8, evolution equations for the geo-

metric variables are written as

~ - o~ - 2~
(= B'a) yij=—2aA;+ yikﬁl,(j + ')’jk:BI,(i - §7ij:85(k ,
(2.20

Instead of this form, in the present work, a conservative form
is adopted as

0,€%¢— 9,(8'e%?) = — aKe®?. (2.24

As in the previous works, we introduce an auxiliary vari-

ableF;=81'9,y;; [26], which evolves according to the evo-
lution equation

~ ~ 1.,
(&t_ﬁlﬁl)Fi: - 167TaJi+2a fk]Aik,j—’_fE(j]Aik_ EAthjl’i

il

~ 2 . ~
+6¢,kAki_ §K,i + 5Jk[ —2aYkAiJ— +185khi

+ (2.2

- - 2.
7i|,3|,j+ leﬁ!i_ §7ijﬁl,|> ] ,
K

where;; andy! are split intos;; +h;; and 81+ f'. In the
numerical simulations, a terd'y;, ,; which appears in the
expression oR;; in Eqg. (2.2]) is evaluated usin; asF; ;.

This replacement is crucial to enable a stable and longterm
simulation.

B. Improvements for numerical implementations

In this section, we report our improvement to several nu-
merical implementations since the latest wik Firstly, the
hydrodynamic part has been improved adopting the so-called
high-resolution shock-capturing scheme for computation of
the transport terms of Eq&.8)—(2.10 as described if21].

With this scheme, shocks are captured with a much better
accuracy than in the previous implementati@+8|. Al-

though the shocks generated during the merger of binary
neutron stars are not very strong, it is promising to use such
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high-resolution schemes to accurately compute peak densi- 14 ——— T T
ties and to evaluate effects of the shock heating.
Numerical treatments for transport terms in the evolution - 1.2

equation for geometric variables have been also improved. {f

For the transport terms in EqR.20—(2.22), a second-order & 1F

upwind scheme has been adopf{@8]. To avoid numerical E

instabilities, we incorporate a limitéroy which the order of 0.8 -

the finite differencing for the numerical flux is lowered from e e L e e e e N N

the second order to the first order at a point of steep gradient 0.66 =

as 0.64 | .
Foum=Fif+F(1—-1), (2.26 3 0'062 R/ E

where F,,m, F1, andF, denote the total, first-order, and 0.58 £ E

second-order fluxes. Since the previous choicé isffound T T e S T ——

to be too dissipativé23], we have changed the functional 0 R0 40 60

form of f to t \/,oc'0

2]6Qy8Qq| FIG. 1. Evolution of central density. in units of the initial

f=1- m, (2.27) valuep. o and central value of the lapse functieq for an oscillat-

ing and rapidly rotating neutron star with=1. The baryon rest
mass and the ADM mass in units =1 (see Sec. Il Eare 0.186

. . J and 0.172, respectively. The compactness measured by the equato-
6Qy and5Qq denote the difference @ for two neighboring rial (polan radius is 0.1290.207. The angular velocity is constant

grid points as6Q,=Q,,—Q, and 5Qd:Q_l —Q,-1 where and equal to the Kepler velocity at the equatorial surface. The time
Q, denotes the value (IGD at thelth grid point. __is shown in units of_3"%. The solid and dashed curves denote the
For the evolution o&°?, we have also changed the finite egyits by the dynamical and AMD gauge conditions, respectively.
differencing scheme. As shown in E.24), the evolution
equation fore®” has the same conservative form as that ofihis gauge condition, a vector elliptic-type equation has to be
hydrodynamic equations. Thus the numerical flux is com-sglyed. A serious drawback of this is the long computational
puted using the third-order upwind scheme with an appropritime needed to obtain its numerical solution. Typically,
ate min-mod limiter as done in the hydrodynamic equations_509, of total computational time is consumed in solving
[21]. This change plays a significant role for enforcing theinis equation.
conservation of the total ADM. mass and angular momentum.  To gvercome this drawback, we adopt a dynamical spatial
The outer boundary condition fap has been also im- gauge condition, e.g., if24,25. Following [27], the equa-
proved. In our previous works, we simply imposed tion for the shift vector is chosen to be

whereQ denotes one of the variables amokg, K, and;; .

_ -1 ~
$=0(r". (228 0B =[F + At(aF))], (23D
Itis replaced with a better condition as whereAt denotes a time step in numerical computation. The
M second term in the right-hand side of Eg.31) is introduced
¢=—+0(r?), (2.29 to stabilize the numerical computation. In this choig,
2r obeys a hyperbolic type equatidfor a sufficiently small

whereM is the ADM mass which will be defined in Sec. Il E. value ofAt) as

) I O
C. Change in gauge conditions FPI=AiBI+ §?’Jk(7k(7i,3' -9, (2.32

As the time slicing condition, an approximate maximal .
slice (AMS) conditionK~0 is adopted following previous whereS' denotes the source term. With this gauge condition,
paperd8]. On the other hand, the spatial gauge condition hashe fraction of the computational time occupied for imposing
been changed. the spatial gauge is negligible. Furthermore, we have con-
Our previous simulations were performed adopting an apfirmed that the numerical solution in this gauge condition
proximately minimal distortiodAMD ) gauge conditiofi23]. agrees well with that in the AMD gauge condition for col-
The equation in this condition is schematically written as lapse of neutron stars to a black h¢2¥] and for oscillating
and rapidly rotating neutron stafsf. Fig. 1). This indicates
that the present dynamical gauge is physically as good as the
(2.30
AMD gauge.
Since 8% obeys a hyperbolic type equation in this gauge
where S; denotes the source term composed of geometricondition, so shouldF,. Thus we impose an outgoing
variables and matter sources, afig the flat Laplacian. In  boundary condition foF, as

1 .
SijA¢B+ §’9i’9JIBJ:Si ;
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fi(t—r) contain a small systematic error. However, it has been stud-
=T (2.33 ied in [8] that the merger process and the final outcome de-
pend very weakly on an artificial approaching velocity of
~10% of the orbital velocity.

wheref|(t—r) is a function and its value at outer boundaries
is determined from the values on the eight nearby grid points

at a previous time step. The same type of boundary condition E. Definitions of quantities
is imposed forA;; and y;; [26]. In numerical simulations, we refer to the total baryon rest
mass, the ADM mass, and the angular momentum of the
D. Initial conditions system, which are given by

Binary neutron stars with a moderate compactness of or- 3
bits asa/M =6 wherea denotes an orbital separation are in M, =] p.d°x, (2.39
a quasiequilibrium state even just before the merger because

the time scale of gravitational radiation reaction at Newton- 1 _

ian order~5/64Q(M\Q)%3 [15] (whereMy and Q de- M=—-—— ﬁg D'ydS

note the Newtonian total mass of system and the orbital an- T

gular velocity of binary neutron stgris several times longer et/ _ 2 _

than the orbital period. Thus a quasiequilibrium state should =f pue®?+ E(A”A” - §K2— R ‘e 4| |d3x,

be prepared as the initial condition for a realistic simulation
of the merger. Such quasiequilibrium states are obtained by (2.36
solving coupled equations of gravitational field and hydro-

static equations. For the gravitational field, we adopted the _ % .66

conformal flatness formulatigr28] in which the three geom- J= 87 ﬁﬁw‘P Ai'e*ds

etry is assumed to be conformally flat and the selected com-

ponents of the Einstein equation are solved. Specifically, the 60 e P 1. ~ii
selected components are the Hamiltonian and momentum :f e i+ g Aildje — SA @ kY
constraints, and the trace of spatial projection of the Einstein

equation with the maximal slicing conditidd=0. The so- i 3

lution in this formalism is fully general relativistic in the + 3¢ K | 1d°x, (2.37

sense that they satisfy the constraints.

Itis expected that most of the close binary neutron stars invhered S;= rszrd(cose)dgo ande!=—y(a,) + x(&y)i. To
quasiequilibrium circular orbits have irrotational velocity rewrite the expressions fovl andJ, the Gauss law is used.
fields approximately since the viscous time scale is muctHere,M, is a conserved quantity, and it uniquely specifies a
longer than the gravitational radiation time scale and the ormodel of a stable neutron star for a given valud of
bital period ~2 ms is much shorter than the typical spin M andJ are computed using the volume integral shown in
period of neutron staf29]. Assuming the irrotational veloc- Egs. (2.36 and (2.37). Since the computational domain is
ity field and the presence of a helical Killing vector as finite, they are not constant and decrease after gravitational

waves propagate to the outside of the computational domain
' (2.34 during time evolution. Therefore, in the following, they are
referred to as the ADM mass and the angular momentum
computed in the finite domaifor simply asM andJ, which
the hydrodynamic equations are written into a first integral ofdecrease with timeAs easily predicted from the calculation
the Euler equation and an elliptic-type equation for a velocityusing the quadrupole formul®) decreases at most by 0.5%
potential[30]. and may be regarded as an approximately conserved quan-

The coupled equations of the selected Einstein and hydraity, while J decreases by-5-10%.
static equations are solved by a pseudospectral method de- A model of each neutron star is specified using the com-
veloped by Bonazzola, Gourgoulhon, and Maf@d]. De-  pactness M/R).. which is defined as the ratio of the ADM
tailed numerical calculations have been done by Taniguchinass to the circumferential radius of a spherical neutron star
and part of the numerical results are presente(B2). in isolation(see Tables | and )l To indicate how massive the

Quasiequilibrium solutions are given as the initial condi-system is, we also introduce the ratio of the total baryon
tions for simulations without any modification. In a realistic rest-mass of the system to the maximum allowed mass of

system of binary neutron stars, the orbit is not strictly circu-spherical neutron stars for a given equation of Smﬁégax’
lar because of the presence of the approaching velocity due

"

+Q

J I

=
de

ot

to gravitational radiation reaction. As pointed out by Miller M,
[33], neglecting the effect of the approaching velocity yields Q,= wh (2.389
a systematic error in waveforms and the merger process, if M max

we choose a quasiequilibrium with a very small orbital sepa- Physical units enter the problem through the polytropic
ration as the initial condition. It is likely that gravitational constantx initially chosen, which can be completely scaled
waveforms, in particular the wave phase, obtained belowout of the problem. Sinc&™? has the dimension of length,
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TABLE I. A list of several quantities for quasiequilibria of irrotational binary neutron stars mitli. The compactness of each star in
isolation M/R).,, the maximum density for each star, the baryon rest-mass @jieM,,/M, 4, the total baryon rest mass, the ADM
mass at=0 (M), qo=Jo/M3, P,_o=P,_¢/M,, the orbital compactneg<,=(MQ)??], the ratio of the total baryon rest mass to the
maximum allowed mass for a spherical stqQ, =M, /Mip*,‘nax), gravitational wavelength in units &f in the maximum grid number, and
the products we found when we stopped simulations. In the last column, the estimated ratio of the disk rest mass locasd fat the
termination of the simulation to the total rest mass for the black hole formation case is listed. All quantities are normaliapgiopriately
to be dimensionless: The mass, the radius, and the density can be rescaled to desirable values by appropriately.cHeostgip%ax
denotes the maximum allowed mass of a spherical s@?t{laﬁo.lso atpa~0.32 forn=1 andx=1). BH and NS denote “black hole”
and “neutron star.”

Model (M/R). Pmax Qm M, Mo do Pio Co Q. L/Ng Product Mys/M,
M1414 0.14 vs 0.14 0.118,0.118 1.00 0.292 0.269 0.951 193 0.102 1.62 0.510 NS
M1315 0.13vs 0.15 0.104, 0.134 0901 0.292 0.269 0.961 206 0.0976 1.62 0.479 NS
M1616 0.16 vs 0.16  0.151, 0.151 1.00 0.320 0.292 0.914 158 0.116 1.78 0.533 BH<0.2%
M1517 0.15vs 0.17 0.133,0.171 0.925 0.319 0.291 0.923 169 0.111 1.77 0.507 BH=2%
M1418 0.14 vs 0.18 0.118, 0.195 0.855 0.317 0.290 0.933 182 0.106 1.76 0.467 BH=4%

M159183  0.159 vs 0.183 0.149, 0.203 0.925 0.332 0.301 0.908 156 0.118 1.84 0.498 BH<1%

time, and mass in the geometrical undss G=1, dimen- F. Calibration

sionless variables can be constructed as Several test simulations, including spherical collapse of

dust, stability of spherical and rotating neutron stars, com-

'W* =M, k"2, M=Mx "2 R=Rx "2, parison of eigenoscillation modes of spherical stars with the
(2.39 known results, and longterm evolution of rotating stars, have
J=Jk " ;:pKn and Q=0x"2 been performed to check the reliability of numerical results

obtained in the new implementation. A list of these test simu-
In the following, only these dimensionless quantities are pre!atlgﬂfir?n(tjhzoglriu?;'[tig?nlsr r\(/avzurlasogirtirizstcr{;b\?itcﬁgion of the
sented(namely units ofk=1 are adoptedand, hence, the irng ) ’ .

Hamiltonian constraint, and the conservation of the baryon

bar is omitted.
Nondimensional quantities may be converted to dimen/éstmass, the ADM mass, and the angular momentum. Be-

sional ones for a value of. For k= 1.455x 10° cgs which is cause of the emission of gravitational wavesandJ com-

. . oS . _puted in the finite volume by Eq§2.36 and(2.37) decrease
gigzsjnu:g];gewrrri]t?:rsl’atge density, and time in the dimen with time. However, the sum d¥l and accumulated radiated

energy of gravitational waves, and the sund@ind accumu-
2 lated radiated angular momentum of gravitational waves
M. =1.80M K ( M (2.40 should be conserveat least approximatelyin numerical
am==TENON 14556 10° g 0.180°" computation a$34]

M(t)+AE(t)=M,, (2.43

-1
paim=1.86x 10" 9/0”?’<1_455<105 Cgs> (o.3oo)’ J()+AJ(t)=Jy, (2.44
(2.41

whereAE(t) andAJ(t) denote the total radiated energy and

vz - angular momentum by gravitational waves until a timéor
T, =493 m$— ( ) (2.42  Which the definitions are described in Sec. M, and Jg
1.455<10° cg 100 denote the initial values dfl andJ.
TABLE Il. Computational setting for test simulations.

Model A/Mg Grid size L/Ng L/Mg
M1616 0.134 (633,633,31Y 0.533 42.2
M1616-2 0.134 (505,505,252 0.425 33.7
M1616-3 0.134 (313,313,15y 0.263 20.8
M1616-4 0.111 (377,377,189 0.263 20.8
M1616-5 0.169 (249,249,125 0.263 20.8
M1414 0.156 (633,633,31Y 0.510 49.3
M1414-2 0.156 (313,313,15Y 0.252 24.3
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The violation of the Hamiltonian constraint is locally Hereafter, this quantity will be referred to as the averaged
measured by the equation as violation of the Hamiltonian constraint.

5
’M— e A LY (R EKZ)
8 8 3 I1l. ANALYSIS OF GRAVITATIONAL WAVES

fl//E 5

-
+|27TPH¢5|+§

|A;AT]+ §K2) Gravitational waves are measured in terms of the gauge-
(2.45 invariant Moncrief variables in a flat spacetinid5]. To
' compute them, first we perform a coordinate transformation
Following [21], we define and monitor a global quantity as for the three-metric from the Cartesian coordinates to the
spherlcal polar coordinates, and then spjif into 7;
H= ifp*fwdsx- (2.46 +E,m§” , wherenIl is the flat metric in the spherical polar
M coordinates and;" is given by

T
[A |+ §Rkk

H2ImYIm h1ImYIm,6} h1ImYIm,(p
éf:jm: * rz(KImYIm+GImWIm) rZGImXIm
* r2sinf (K Yim— GimWim)

0o - C|m(9(pY|m/Sin 0 C|m&9Y|msin 0
* 2Dy Xim/sing  —r2D W, ,Sin 6

(3.1
* * — 12D X;msin @

Here, the asterisk denotes the symmetric components. ThHEhe cosine and sine components of the gauge-invariant vari-
quantitiesH,, hims Kim» Gim» Cim, @andD,,, are func-  ables, which are real quantities, are also defined as
tions of r andt, and are calculated by performing integrals

over a two-sphere of a given coordinate radisse[26] for . RL*TRE_, . RL-RF_,
detaild. Y,,, is the spherical harmonic function, aid,,, and le+:—\/z and Ry, R (m>0).
Xim are defined as 3.7)
1 . . . . .
W|m5[(ﬁg)2—00t9c9g— = (%)2 Yo, _ Using the gauge-invariant variables, the energy luminos-
sin“o ity and the angular momentum flux of gravitational waves

can be calculated as

X|m52(9¢[(90_ COtﬁ]Y|m . (32)
dE_ r? )
The gauge-invariant variables of even and odd parities are Gt~ 32, E [10:RE |2+ [ 3:R0, 121, (3.9
defined by

dJ r?
(t r)=-\ /—( _ )I{4k2|m+|( I+1)kym}, (3.3 a:ﬁ ;n [|m(3tR|Em)R|Em|+|m(<9tR|cr)n)R%|]- (3.9
(I+ L '
The total radiated energy and angular momentum are defined
RO (t.r)= /2(I+2)|
m TN =2)0

C
~im ra,D.m), (3.4 8
t dE t dJ
where AE(t)=f dt—, AJ(t)=j dt—. (3.10
o dt o dt

1Im

kllmEK|m+|(|+1)G|m+2rf9rG|m—2h—, (3.5) We have computed modes with-2, 3, and 4, and found
r that the even modes with=|m|=2 are dominant, and the
even mode with=2 andm=0 is secondly dominant. For

_Hom 10 merger of unequal-mass binaries, the amplitude of the even
kam= 7=~ 5 ZLH{Kim T 1) Cim}]. modes withl =|m|=3 are as large as that 6=2 andm
(3.6 =0. Thus attention is paid to these three modes.
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To search for the dominant frequencies of gravitational The simulations were performed using a fixed uniform

waves, the Fourier spectra are computed by grid and assuming reflection symmetry with respect to the
t equatorial plang¢here, the equatorial plane is chosen as the

@Imt(f):f fe2wiftR|mtdt. (3.11) orbital plane. The typical grid sizg i9633, 633, 31Y for

t; (X,¥,2z). The grid covers the region-L=x<L, —L=<y

. , . , <L, and Osz<L wherel is a constant. The grid spacing
In the analysist; is chosen as the time at which the simula- hich is /316 in the typical cageis determined from the
tion is stopped. Before<r qos Wherer g5 denotes a radius at -, gition that the major diameter of each star is covered with
which gravitational waves are extracted, no waves propagatg, + 40 grid points initially

to rL(J)an Sct’hthit Wﬁ ?hoosﬁf:ﬁb% ner trum which i Numerical results depend weakly on the grid resolution
sing the i-ouner spectrum, the energy spectrul €N 13nd location of the outer boundaries. In order to investigate

often referred to in literaturée.g.,[18,20) can be written as . " . . .
this, additional test simulations were performed choosing the

dE = R smaller grid sizes with a fixed value of grid spacing and the
ar Efz > [Rim(H[%, (3.12  larger grid spacings with a fixed value lofor selected mod-
1m=0 els. The setting for the test simulations are summarized in
where form#0, we define Tablg Il and the numerical .I’eSl'J|tS are presented in Sec. IVE.
With a (633, 633, 31Ygrid size, about 240 GB computa-
Rym= \/| §|m+(f)|2+|ﬁ|m—(f)|2- (3.13 tional memory is required. For the case of neutron star for-

mation, the simulations are performed for about 20000 time
To help the calculation ol E/df, |§|m(f)f|f is presented as steps and ther_l stopped artificia_lly. The computational time
the Fourier spectrum in the following. for_ one model in such a calculation is aboutlloo CPU hours
using 32 processors on FACOM VPP5000 in the data pro-
cessing center of National Astronomical Observatory of Ja-
pan(NAOQJ). For the case of black hole formation, the simu-
A. Setup for simulation lations crash soon after the formation of apparent horizon

Several quantities that characterize quasiequilibriunPecause of the so-called grid stretching around the black hole
states of irrotational binary neutron stars used as initial conformation region. In this case, the computational time is
ditions for the present simulations are summarized in Table [2bout 50 CPU hours for about 10000 time steps.

All quantities are appropriately scaled with respecktim be In the above setting, the wavelength of gravitational
dimensionless. waves att=0 (denoted by\) is about twice that of (cf.

As the initial conditions, we choose binaries of an orbital Table ). As found in a previous pap€8], gravitational
separation which is slightlyby ~10%) larger than that for waves and radiation reaction are taken into account with a
an innermost orbit. Here, the innermost orbit is defined as &ir accuracy(within ~10% numerical errgrin this setting.
close orbit for which Lagrange points appear at the innefSince the typical wavelength of gravitational waves becomes
edge of neutron staf86,31. Models M1414 and M1616 are shorter and shorter in the late inspiral phase, the accuracy of
equal-mass binaries, and others are unequal-mass ones. Tdl# wave extraction is improved with the evolution of the
baryon rest-masses for models M1616, M1517, and M1418ystem. As a result, the magnitude of the error in the total
or for M1414 and M1315 are almost identical, while the radiated energy and angular momentum would be much
baryon rest-mass ratios are identical for models M1517 angmaller than 10%. This point will be reconfirmed in Sec.

IV. NUMERICAL RESULTS

M159183 as 0.925. IV D. The wavelength of quasiperiodic waves emitted from
The frequency of gravitational waves for binaries in thesethe formed neutron star is much shorter thapandL, so
quasiequilibria is given by that the waveforms in the merger stage can be computed

accurately in the case of neutron star formation.

As found in [36,31], orbits for irrotational binaries of
equal mass withI'<<2.5 (n>2/3) are dynamically stable
from the infinite separation to the innermost orbit. Therefore
and, thus, the orbital period of the quasiequilibfa,. o, is the merger in reality should be triggered by the radiation
— reaction of gravitational waves fdr=2. In the previous

°>

) 2.8M¢
foe=—,~960 Ha —-

3/2
Co ) , (4.1)

0.12

2.8Mq\ 1

Mo

Lo implementation, however, the radiation reaction for the late
0.12 inspiral stage was not very accurately computed. Thus the
simulations were initiated by setting a binary at the inner-
whereC, is a compactness parameter of an orbit defined bynost orbit and reducing the angular momentum slightly to
induce prompt mergdr7,8]. In the new implementation, on
Co=(My0)?3= % 43 the other hand, t_he_ radiation reaction can be comput_ed with a
0 0 ag ' good accuracywithin ~1 to 2% error throughout a simula-
tion, see Sec. IV Thus, in the present work, we prepared
Here, aq is defined as the initial orbital separation. For thebinaries of orbits slightly far away from the innermost orbits
initial conditions chosen in this papery>8.5M,. and started simulations without adding any perturbation.

4.2)

P,_o~2.08 m%
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FIG. 2. Snapshots of the density contour curvespfan the equatorial plane for model M1315. The solid contour curves are drawn for
pl0.15=1-0.1j for j=0,1,2...,9, and thedashed-solid curves are fp¢0.15=0.05, 0.01, 10%, and 10*. Vectors indicate the local
velocity field @*,vY), and the scale is shown in the upper right-hand corRer, denotes the orbital period of the quasiequilibrium
configuration given at=0. The length scale is shown in units®M,/c?, whereM, is the gravitational mass computed at0. In the first
panel, the primary neutron star is locatedkatO.

With this setting, a transition from the inspiral to the mergerthe minimum value ofx for all the models adopted in this

is triggered by the radiation reaction. This point will be dem-paper except for model M159183.

onstrated in Sec. IVD. The numerical results for models M1414 and M1616

computed by an old implementation have been already pre-

sented in[7,8]. With the present new implementation, how-

ever, the quality of the numerical results is significantly im-
In Figs. 2-5, we display the snapshots of the density conproved and, hence, the improved results are displayed as the

tour curves and the velocity vectors at selected time steps farpdated ones.

models M1315, M1414, M1418, and M16187]. Figure 6 The simulations for models M1616, M1517, and M1418

shows the evolution of the maximum valuespoédnd ¢, and  crashed soon after the formation of apparent horizons be-

B. Characteristics of the merger
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FIG. 3. The same as Fig. 2 but for model M1414.

cause the black hole forming region was stretched signifi0.9P,_,, the orbit becomes unstable probably against hydro-
cantly and the grid resolution became too poor to resolvelynamic instability to start the merger. At this point, the lag
such a region. On the other hand, we artificially stopped th@ngle which is defined to be the angle in the equatorial plane
simulations for models M1414 and M1315tat3.5P,_, to  between the major axis of each star and the axis connecting
save the computational time. At the termination of thesethe centers of mass of two staf0] is ~10°-15°. In
simulations, the averaged violation of the Hamiltonian con-unequal-mass binaries, we always find a larger lag angle for
straint does not increase rapidly and remains of order 0.1the smaller-mass star. This is in agreement with thd2@j.
Therefore the simulations could be continued for a much In contrast to previous Newtoniarfl17,18, post-
longer time than 3.B,_, in the formation of the massive Newtonian[19,20, and approximately relativistic simula-
neutron stars. tions[38], the formation of a black hole can be determined in
In every model, the merger is triggered by the radiationfully general relativistic simulations. In the black hole for-
reaction: Forts=P,_, the orbital separation decreasesmation, most of the fluid elements are swallowed into the
gradually as a result of gravitational radiation reaction anddlack hole. Therefore the evolution of the system is signifi-
each neutron star is elongated little by little. The elongatiorcantly different from that in the neutron star formation. From
is always larger for the smaller-mass star in nonequal mashis reason, we describe the character of the merger for the
binaries. At a critical separation which is reachet-af.8 to ~ formation of neutron stars and black holes separately.
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FIG. 4. The same as Fig. 2 but for model M1418. Here, the solid contour curves are drgwd.88=1-0.1j for j=0,1,2 ...,9, and
the dashed-solid curves are f@0.20=0.05, 0.01, 102, and 10 *. The thick dotted circle in the last panel of radius0.5M, denotes the
location of the apparent horizon. At=0, the primary neutron star is locatedxat 0.

1. Formation of hypermassive neutron star role for supporting the massive object, is increased in the

For models M1315 and M1414, massive neutron stars arB€W result. The other possible reason is an improvement on
formed (cf. Figs. 2 and B In this case, the total baryon thg treatment of the transport term for geometric variables.
rest-mass of the system is about 1.62 times as largyS8, This mak.e.s the angular momentum conservation more accu-
for a polytropic equation of state with=1. Thus the formed rate, avoiding the spurious collapse.
neutron star is hypermassive in the sense that the mass is Besides the correction to the threshold for collapse of
larger than the maximum allowed value for rigidly rotating merged objects, the qualitative properties during the merger
neutron stars witm=1 [39]. As indicated in the previous Of equal-mass binaries are essentially the same as those
paperdq7,8], such a large mass is supported by a large cenfound in the previous simulatior{¥,8]: The merged object
trifugal force due to rapid and differential rotation. constitutes a double core structure soon after the mécfer

In [7,8], we concluded that the merged object for modelfifth panel of Fig. 3 and Fig. (b)]. At the collision of two
M1414 eventually collapses to a black hole in 2 t¢3 . neutron stars, the radial infall velocity is not so large that
However, in the present improved simulation, a hypermasshock heating is not very important around the mass center.
sive neutron star is formed instead of a black hole. There arth Fig. 8, we showk’ along thex andy axes, which denotes
two plausible reasons for this discrepancy. One is that shock$e efficiency of the shock heating. In our notation, it is unity
are calculated in a better accuracy with the new implemeneverywhere inside the neutron starstat0. Thus the fluid
tation of a high-resolution shock-capturing scheme and, as elements for which the value &f' is larger than unity have
result, the thermal energy, which could play an importantexperienced the shock heating. This figure shows that for
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FIG. 5. The same as Fig. 4 but for model M1616.
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=<4My, k' is ~1 to 2, implying that the shocks do not play tion around the mass center but also has a quasiradial oscil-
a very important role except for the outer envelops. lation which is originally excited by a radial plunge at a
In the outer region, small spiral arms are formed soortransition from the inspiral to the merger stage. Because of
after the merger sets in, but they do not spread outwarthe quasiradial oscillation, weak shocks are formed in the
widely because of insufficient angular momentum. The spirabuter envelops. As a result, the outer region is heated up and
arms subsequently wind around a central double core. In thgains the kinetic energy to expand outwdod. Fig. 8b)].
central region, the double core has not only a rotational moThis process is repeated many times transferring the kinetic

E| L — LIS B B B T |E 0. |_E
% 0.15 - % 0. \—E
< - 1 o NE
0.1 RO AN N TG 0. .
Eoooooo Lo oy T S T T 0. 3
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FIG. 6. Evolution of the maximum values pfand ¢, and the minimum value of (a) for models M1414(dashed curvesand M1315
(solid curves, and(b) for models M1616dashed curvesM1517 (long-dashed curvésand M1418(solid curve$. Note that for the case of
black hole formatioffFig. 6(b)], the maximum density decreases in the final stage. The reason is as follows: We ghasse fundamental
variable to be evolved and compuyiefrom p, /w/e®®. In the final stageg¢ is very large 1) and, hence, a small error ifi results in a
large error inp. Note that the maximum value @f, increases monotonically by many orders of magnitude.
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FIG. 7. The density profile along the(dotted curvesandy axes(solid curve$ (a) for model M1315 at=2.303F,_, and(b) for model
M1414 att=2.351P,_,,.

energy of the inner core to the outer region and, hence, the In the central region, a massive object with an asymmetric
quasiradial oscillation of the core damps graduédlge Fig. double core is formedicf. the last panel of Fig. 2 and Fig.

6). 7(a)]. As in model M1414, the central core oscillates quasira-
For the merger of an unequal-mass bindéfgr model dially (see Fig. 6. This motion produces shocks around the
M1315), the merger process is qualitatively different from outer part of the core and, as a result, the energy is trans-

that in the equal-mass case because tidal disruption of tHerred to the outer envelopsf. Fig. 8a)]. Since this process
smaller-mass star by the massive primary takes plate is repeated, the quasiradial oscillation of the core damps
fourth panel of Fig. 2 The tidally disrupted star subse- gradually. The amplitude of the quasiradial oscillation for
quently forms a tidal tail. During the formation of the tidal model M1315 is not as large as that for model M1414. This
tail, the angular momentum is efficiently transferred outwardreflects the difference of the merger process between M1414
and, as a result, large spiral arms are formed. The spiral arnred M1315: For M1414, two neutron stars merge without
subsequently wind around the central core to be accretiotidal disruption and mass ejection outward. Therefore all the
disks. Because of the angular momentum transfer at the tidahass elements in this system collide coherently. On the other
disruption and at subsequent formation of spiral arms, théand, for M1315, the tidal disruption takes place. As a result,
disk radius is much larger than that for model M14A a fraction of mass elements in the smaller-mass star do not

Fig. 9. have a plunging motion at the collision and, hence, the
1000 E T T T T T T T I T T T T T T T E 1000 E T T T T T T I T T T T T T T E
- M1315 ] M1414
100 ¢ = 100 & =
< 10k = X 10k =
© 3 © - E
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FIG. 8. k' (=¢/p) along thex (solid curve$ andy axes(dotted curves(a) for model M1315 at=2.303,_, and(b) for model M1414
att=2.351P,_,. Note that at=0, this quantity is unity everywhere inside neutron stars>1 implies that shock heating is experienced.
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FIG. 9. Evolution of the baryon rest-mass fraction outside the spheres of rabliygsdlid curve, 4.9M (dashed curve and &V,
(dotted-dashed curyda) for model M1315 andb) for model M1414.

merger does not set in as coherent as that for model M1414ong duration after the merger. This point will be discussed in
Due to this reason, the amplitude of the quasiradial oscillaSec. IV C.
tion is suppressed.

Figure 6a) shows that the maximum density of the hy-

permassive neutron star for model M1315 is larger than that
for M1414 in spite of the fact that the total baryon-rest mass For models M1418, M1517, M1616, and M159183, black

is nearly identical. This reflects the fact that the regionholes are formedcf. Figs. 4, 5, and 10in a dynamical time
around the mass center for model M1315 rotates less rapidly

2. Formation of rotating black hole

than that for M1414. This suggests that the hypermassive t=1.273P,, t=1.301P,_,
neutron stars formed from the merger of the smaller rest- """/ ot TTmm T Tor Fr il s Thr it
mass ratios are more compact. 5[ 03c] [ e ;\\\,\o gc
In Fig. 9, we plot the evolution of the baryon rest-mass - P 1 F
fraction outside the spheres of radius/g (solid curve, s F \ w(/ = \?,\ 1F T
4.5M, (dashed curve and @M, (dotted-dashed curye o[ |\ VW@ N
Here,r =0 is chosen as the center of the spheres. This shows. [ ) /Eréfﬂ/ A S \\:_)‘/ /;; f
the significance of the angular momentum transfer for model C N 1r \\\_)/7)1 g
M1315. For model M1414, the baryon rest mass outside the =5 [ 10 \\N—V’/’ 3
spheres of fixed radii simply oscillates with a mean value T \‘:;:‘::;?\
which is approximately constant with time evolution. The
fraction of the rest mass outside the sphere of radMg & _ t=12564P, - __ t=1224P,
~1% in this case. On the other hand, for M1315, the baryon [~ 1418 ! ! . "M159183' '_) ]
rest mass outside spheres of fixed radii increases gradually L vy \,_\\\XO pc - 03¢
with time. This result reflects an efficient angular momentum A M—‘\'\X\\X- i SN ]
transfer. Figure 9 indicates that the fraction of the rest massye :f 4 PRI N } ]
outside the sphere of radiusVly is ~5%, implying that < 0 1 \b } Hr T+
disks of =0.1M , are formed around the hypermassive neu- > f l\/ /@//, o ; i J; ;I
tron star. RN \g\ssa‘a,i/i—%sz: ro. 7]
A post-Newtonian simulation reports that the fraction of ~° [§ | \:*:\\,4 1r 7
the disk mass for an equal-mass mergeri8% [20]. This i \g\\\_\\»\,ﬁi C L]

value is much larger than the value obtained in this paper. A
plausible reason for this discrepancy is that in the post-
Newtonian approximation, the gravity of the hypermassive

0
X/ M,

5

-5 0 5

X/ M,

neutron star is underestimated and, hence, the mass capturedr|G. 10. Comparison of the density contour curvesfdn the

by it is also underestimated.

equatorial plane near the end of the simulations for models M1616,

Because of the nonaxisymmetric and quasiradial oscillam1517, M1418, and M159183. The solid contour curves and the
tions of the hypermassive neutron stars, quasiperiodic gravirelocity vectors are drawn in the same manner as those for Fig. 4.
tational waves of a few characteristic oscillation modes aré&he thick dotted circle of radius~0.5M, denotes the location of
simultaneously excited for models M1315 and M1414 for athe apparent horizon.
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FIG. 11. (8 1—M,(r)/M, as a function of time for/My,=3 (solid curveg and 4.5(dashed curvefor models M1616, M1517, and
M1418.(b) The same a&) but for models M1517 and M159183 for which the rest-mass ratio is identical but the total baryon rest mass is
different.

scale~1.3P,_ irrespective of the baryon rest-mass ratios. Figure 11 shows the evolution of the baryon rest-mass
The formation of the black holes is determined by finding thefraction outside spheres of fixed coordinate radii for models
apparent horizong40]. In all the cases, the total baryon rest M1616, M1517, M1418, and M159183. As the coordinate

mass of the system is about 1.75 times as largd 5., for  radii of the spheres, it is desirable to choose the radius of the
a polytropic equation of state with=1. Since the black innermost stable circular orbit around the formed black

holes are formed foM, =1.75V sPh__ while the hypermas- holes, but in practice it is difficult to determine it from nu-

* max

sive neutron stars are the outcomesNby<1.65MPh_ the  merical results exactly for dynamical spacetimes. Thus we
threshold of the total baryon rest mass for the prompt blackather arbitrarily choose M, and 4.9, which are not far
hole formation is between 1.65 and 1M for n=1. away from the radius of the innermost stable circular orbit

The formation process of the black holes depends on th&r rotating black holes of nondimensional angular momen-
rest-mass ratios. For the merger of two equal-mass neutrddm parameter~0.8 to 0.9. For model M1616, the mass
stars, the merger results in a massive object of a double coféaction outside these radii decreases monotonically, and at
without tidal disruption and mass ejection outward. Thethe termination of the simulation, less than 0.2% of the total
merged object is too massive to support its self-gravity andiest mass of the system is outside the sphere of radilis 3
hence, collapses to a black hole promptly. Since the specifion the other hand, the mass fraction fer3M, appears to
angular momentum of each fluid element is too sifgiland ~ approach~2% and~4% for models M1517 and M1418,
also since there is no efficient transfer of angular momentuniespectively. This indicates that for mergers of unequal-mass
during the merger, the disk mass around the formed blackeutron stars, a certain fraction of the mass would form
hole is very smal(cf. Figs. 1@a) and 1@e)]. disks, and the mass fraction seems to increase in proportion

On the other hand, for the merger of two unequal-mas$o 1—Qy for a given value oM, .
neutron stars, the black hole formation appears to be trig- Comparing the results for models M1517 and M159183
gered by accretion to the primary star: First, the primary stafor which the rest-mass ratio is identical as 0.925, it is found
tidally disrupts the smaller-mass companion at a criticathat the mass fraction of disks decreases with the increase of
separation. Subsequently, most of the tidal debris accrete e compactness of neutron stars. The reason is simply that
the massive primary star and a small fraction of them formthe gravity of the system is stronger for model M159183 and,
spiral arms. The accretion increases the mass of the primagg a result, a larger fraction of the mass is swallowed into the
star rapidly, eventually, exceeding the critical value for for-black hole. Obviously, smaller compactness of progenitor
mation of a black hole. During the merger, the angular mo+eutron stars is in favor of the formation of disks around a
mentum transfer works efficiently in the spiral arms, subseformed black hole.
quently forming an accretion disk around the formed black Figures 12a)—-12d) show«’ along thex axis for models
hole. M1616, M1517, M1418, and M159183. Figures indicate that

In Fig. 10, we compare snapshots of density contoumost of the fluid elements are heated up by shocks, except
curves soon after the formation of apparent horizons foithe inner region of the disk where the valuexdfis less than
models M1616, M1517, M1418, and M159183. Obviously, 10. This implies that the shock heating is not very important
fractions of the disk mass and the disk radius are larger fofor high density regions; i.e., at the collision of two neutron
binaries of the smaller rest-mass ratios. Comparing the figstars, the shocks are not very strong.
ures for M1517 and M159183 for which the rest-mass ratio In Fig. 13, we display the time evolution of mass of ap-
is identical as 0.925, it is also found that the disk mass angarent horizonsM 5y in units of My for models M1616,
radius are smaller for the merger of the larger compactnes#1517, M1418, and M159183V 5y is defined by
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a value of~0.9 for the nondimensional angular momentum
FIG. 12. <’ (=#/p) along thex axis for models M1616, M1517, 9 Of the formed black hole for model M1616. Since the ini-

M1418, and M159183 at the same time steps as those of Fig. 10fial value of the systemg, is about 0.913, ant and J
decrease by-0.5% and~ 7% by gravitational radiatiofsee

S Sec. V), respectively, the expected final valueqot ~0.85,
Man= \/H, (4.4  which agrees with the numerical value within5% error.
m (The disagreement is due to a numerical error associated
“with insufficient grid resolution. This point is confirmed by
the convergence test presented in Sec. VIlBe result pre-
M1616. M1517, and M159183, and-0.75 for model sented here indicates that the location and the area of the

. . R, 3
M1418. For models of the smaller rest-mass ratios, the Valugpparent horizon are determined withirb% error with the

of May/Mg is smaller; i.e., a larger fraction of the mass current grid resolution.
element is not swallowed into a black hole.

Since most of the mass elements fall into the black hole
and radiated energy of gravitational waves is less than 1% of In Figs. 14—16, we present the gravitational waveforms
M, for model M1616(see Sec. IV { the black hole mass (gauge-invariant quantiti¢end the accumulated energy and
may be approximated bW, within ~1% error. Further- angular momentum loss by gravitational radiation as a func-
more, recall that the area of a Kerr black hole of mislsand  tion of the retarded timet(ry,9/P;=o. (In the following,
Kerr parameteMq (q=J/M?) is written by the retarded time is always normalized By_,.) It should

whereSis the area of the apparent horizon. The figure indi
cates thatM 5, /M, appears to approack 0.85 for models

C. Gravitational waves
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U R B I L stricted spacetime data set using the so-called Lazarus tech-

nigue[43]. Leaving the development of the two methods for

5 1F /\ /;\ /“‘ . . twom
S ok [IRE future implementations, we focus our discussions below
$ 2 ;T mainly on the character of gravitational waves for neutron
= -lE E star formation than for black hole formation.
-2 E PN BRI B! |v | R B S 3
0 1 __I T I TTT I T 1T I T 1T I T 1T I I__ . )
. (;5 £ A3 1. Hypermassive neutron star formation case
= . = AN . . . "
> 0 B D N AN A E In Fig. 14, the gauge-invariant quantities fot,rf)
mé ~0.05 = =AY \* =(2,2), (3,3, and(2,0) for models M1315 and M1414 are

displayed. In both cases, the inspiral waveforms are domi-
nant fort—r << P;—o and quasiperiodic waves excited by
nonaxisymmetric quasiperiodic oscillations are emitted after
the merged objects are formed for r ,,e= Pi—. It is found

FIG. 15. Ry, r andRas. 1 as a function of the retarded time for that the waveforms of thé2,2) mode for two models are
models M1616 (long-dashed curvés M1517 (dashed curves  Similar but a slight difference can be seen in the quasiperi-
M1418 (solid curve$, and M159183dotted curves odic oscillation fort —r ,,= Pi—o. For model M1315, quasi-

periodic waves appear to be mainly composed of a single

be noted thaR,,.r/My=1 implies the values ofh, and oscillation mode. On the other hand, a non-negligible modu-
rhy along thez axis due tol =m=2 modes are=1.85 km, lation can be observed in the waveforms for model M1414.

0O 02 04 06 08 1
(t - rob:) / Pt:o

where This implies that they are composed of more than two domi-
nant modes.

1 Yoo Yoo Figure 14 shows that the gauge invariant variable for the

h,= ﬁ Yoo~ @ v Hx= 2sing’ (4.6 (2,00 mode does not oscillate around zero. This is due to the

. . . fact that gravitational waves are extracted at a finite radius
Irrespective of the mass and the mass ratio of binaries, thg, 4 a5 3 result, this variable contains nonwave components

inspiral waveforms are dominant for r ops= Pi=o, and sub-  gsgqciated with a stationary quadrupole moment. To calcu-
sequently, the merger waveforms are excited. For hypermagsie the Fourier spectrum of gravitational waves, we first

sive neutron star formation, quasiperiodic waves are excited . -
because of its quasiradial and nonaxisymmetric oscillation subtracted the stationary component fr&ya and, then, per-

For the black hole formation case, the computation crashe rmed the Fourier trgnsfo_rmatlon: In Fig. 17, the Fourier
soon after the formation of apparent horizon. As a result, wepPecta of the gguge-lnvarlantﬂvarlables_ for models M1315
were not able to compute complete gravitational waveform@nd M1414 are displayed. Het®,(f)f|r is plotted. When

for t—ro,e=P;_o, for which gravitational waves would be ftakm.g a Ipok at this figure, the following should be also kept
dominated by quasinormal mode ringiri@d]. A straightfor- N mind: (i) the spectra presented for tf@2) mode are not
ward approach to compute such gravitational waves is téalistic forf<fqe because the spectra of inspiraling wave-
develop a black hole excision techniq[#2], by which it ~ forms should be dominant in reality &R,,(f)f|of =/ for

may be possible to continue the simulation for a long timef <fqg; (i) the amplitude of the peaks foundfat 2f ¢ and
duration even after the formation of the black hole. An alter-3f e for the (2,2) mode and aff o¢ for the (2,00 mode is
native approach is to extract gravitational waves from a reunderestimated because we stopped the simulations during
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FIG. 16. The accumulated energy and angular momentum loss by gravitational radiation as a function of the retafdefbtimedels
M1315 (solid curve$ and M1414(dashed curvgsand(b) for models M1418solid curve, M1517 (dashed curvgsM1616 (long-dashed
curves, and M159183dotted curves
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the oscillation of the formed hypermassive neutron stars téhe Fourier spectrum appear-atl.5 and 2.2 kHz for M1414

save computational timesee discussion belgw and at~2.25 kHz for M1315. These frequencies will be too
For model M1315, a single peak is found at a frequencyhigh to be detected by the first LIGO. However, these qua-

~3.2f ue in the Fourier spectrum, while for model M1414, sjperiodic gravitational waves will be interesting targets for

two peaks of=2.0f oe and 2.98¢ are found for the(2,2)  resonant-mass detectors and/or specially designed advanced

mode. The difference in the number of the peaks reflects thgterferometers such as the advanced LIED

difference of the merger process. For model M1414, the |t should be mentioned that the peak frequencies in the

merged object constitutes a nonaxisymmetric hypermassivgost-Newtonian simulatiof20] are smaller than those found
neutron star of a double core structure, which quasiradially,, study for a given neutron star mass and radius

oscillates with a large amplitude. Therefore at least two

d . i q iradial lati ~15 km. This may be due to the fact that, in our fully gen-
mo es(no_namsymme fic and guasiradial osciiiation mades eral relativistic simulation, the gravity is taken into account
are contained. The peak &t-3fqe is associated with the

. . = : i er than that in the post-Newtonian ap-
nonaxisymmetric bar-mode oscillation, while that &t correctly and is strong P P

~2f e is produced by a modulation due to coupling betweerfrox'matlon' Consequently, the formed hypermassive neu-

the nonaxisymmetric and quasiradial oscillations because ﬂ}%cg)]%z:ar is more compact and hence the oscillation frequency

difference of their frequencies is approximately equal 4g . - S .
which corresponds to the frequency of the quasiradial oscil- The magnitude of the quasiradial oscillation is reflected in

lation. These two peaks in the Fourier spectra have been aldB€ amplitude of the gravitational waves for &0 mode
found in Newtonian[18] and post-Newtonian simulations [42]- In the early phaset(-rqps=Pi-o), this mode is domi-
[19,20. On the other hand, for model M1315, the mergednated by a stationary quadrupole mode which is not associ-
object forms a hypermassive neutron star of an asymmetrigted with gravitational waves, but after a hypermassive neu-
double core structure. In this object, the amplitude of thetron star is formed it becomes a dominant component. Figure
quasiradial motion is not as large as that for model M141414 shows that the amplitude of th&,00 mode for model
As a result, the peak dt~2fqe associated with the modu- M1414 is larger than that for M1315 by a factoref. This
lation between the nonaxisymmetric and quasiradial oscillaresults from the fact that the amplitude of the quasiradial
tions is not as remarkable as that for model M1414. Thisoscillation for M1414 is larger than that for M1315.
feature has been also found in the post-Newtonian study The frequency of gravitational waves for tt20) mode is
[20]. within the sensitive band of kilometer-size laser interferom-
The frequency of the peaks for tli2,2) mode around eters as~foe~0.7(2.8V o /Mg) kHz. Although the ampli-
~3fqe for model M1315 is slightly larger than that for tude is~5% of that of the dominan2,2) mode, this mode
M1414. This results from the fact that the maximum densitydoes not damp soon as indicated in Fi@)6Therefore if the
(or the compactnes=f the formed hypermassive neutron cycles are accumulated using a theoretical template, the ef-
stars is larger for M131%see Fig. 6. This fact indicates that fective amplitude may be much larger than that for one cycle
for the smaller rest-mass ratio, the gravitational wave freand may be as large as the amplitudeRg§(~Mg/r) at f
quency associated with the nonaxisymmetric oscillation is~fqe. Unfortunately, it is difficult to exactly estimate the
higher for a fixed total rest mass of the system. effective magnitude from the present numerical results of
Assuming that the total mass of the system idV28 foe  finite duration. However, gravitational waves of this mode
is ~750 Hz for model M1414 and=700 Hz for model may be an interesting target even for the first-generation
M1315 according to Eq4.1). This implies that the peaks in gravitational wave detectors such as the first LIGO.
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2. Dependence of inspiral waveforms on mass ratios For the case of hypermassive neutron star formation, the
energy and the angular momentum are carried away gradu-
lly due to gravitational radiation emitted by the quasiperi-
dic nonaxisymmetric oscillations. Since the emission time
scale is much longer than the dynamical time scale, it is

From Fig. 15, we find that the maximum amplitude is
smaller for models of the smaller rest-mass ratios. Accordin
to the quadrupole formula, the maximum amplitude for a

. - B 2 . -
given total mass is proportional @y /(1+Qw)" which is impossible to follow the longterm evolution of the hyper-

in a small range 0'246_9'25 for 68y <1. This suggests massive neutron stars to the final state. If we assume that the
that the maximum amplitude would depend weakly on the, o jar momentum is dissipated by gravitational waves with
value of Qy . However, the ratios of the maximum ampli- {he'same rate as that at the termination of the simulation, the
tude for models M1517 and M1418 to that for model M1616 angylar momentum will become smaller thanJy. Around
are 0.966 and 0.909, respectively. This implies that the maxir=300p,_,. Since the hypermassive neutron stars are sup-
mum amplitude is suppressed with the decreas@pf This  ported by the centrifugal force, they will collapse to a black
results from the fact that the tidal effect plays a more imporhole as a result of the angular momentum dissipation within
tant role in the close binaries of the smaller rest-mass ratios-1 s.
Since the tidal disruption sets in at a larger orbital separation In the SPH calculationfl9,20,3§, the quasiperiodic os-
for the smaller rest-mass ratios, the maximum amplitudeillations of the hypermassive neutron star damp in much
should be decreasefSimilar results are also found in Fig. shorter time than in our numerical results. If we believe their
16(b) (see below.] This property has been reported in the results, the lifetime of the hypermassive neutron stars would
Newtonian and post-Newtonian studies, {dd@,19,2Q. Ac-  be much longer. The reason for the discrepancy between our
cording to[19,20, the suppression factor is proportional to and their results is unclear. However, as far as our simula-
Qu (for a fixed value ofM,), agreeing with our results tions are concerned, there is no reason for the damping of the
approximately. nonaxisymmetric oscillation in such a short time scale since
Another difference of gravitational waveforms betweenth€ emission time scale of gravitational waves is much
models of equal-mass and unequal-mass binaries can be sd@Rg€r than one oscillation period and other damping pro-
in the modes of odd values of (Figs. 14 and 16 For the cesses such as dynamlcal angular momentum 'transfer are
merger of equal-mass binary neutron stars, the amplitude fdf"iKely to work efficiently. We suspect that damping found

those modes is zero because of theotation symmetry. On In previous works may be due to a spurious numerical dissi-
the other hand, it is not negligible for the mergérs of pation or due to an overestimation of gravitational radiation

unequal-mass binaries. However, the amplitude is at mo&2MPing in the post-Newtonian formalism they adopted.
5% of that of the(2,2) mode.
D. Gravitational radiation reaction

3. Radiated energy and angular momentum The ADM massM and the angular momentuth com-
puted in a finite computational domain using Es36) and
(2.37 decrease with time because of the gravitational radia-

_tion. However, conservation law®.43 and (2.44 should

still be satisfied. Here, we demonstrate that they are satisfied

approximately in the present simulations.

Figure 16 shows that in the final inspiral phage- (s
=<P.—g), ~0.3-0.5% of the initial ADM mass and 6-8%
of the initial angular momentum are carried away by gravi
tational radiation. 1 does not change much bdidecreases
significantly) This implies that the nondimensional angular . - , .
m%menturrxl/)parametg[ decreases by-5-7% due to t%e Figure 18 shows the. Flme eyolutlon ol andJ.(sohd
gravitational radiation. Since a large fraction of baryon mas%urves) and of the quantities defined by the foIIowmg equa-
of the system is swallowed into a black hole for models ions (dotted curvepfor models M1414 and M1517:
M1616, M1517, M1418, and M159183, the ADM mass of M’ (t)=My— AE(1), 47
the black hole should be-M within a few percents error.
From this fact, we may expect that the final valuegpis ,
~0.951, within a few percents error and, hence, it is in the (1) =Jo—AJ(D). (4.9
range between 0.8 and 0.9. This value is approximately con-
sistent with the value derived from the area of apparent hoThe relationsM’(t)=M(t) andJ’(t)=J(t) are equivalent
rizons computed at the termination of the simulations. to the conservation of the total ADM mass energy and angu-
Figure 16 also indicates that the energy and angular mdar momentum. Figure 18 indicates that relatiavis=M’
mentum loss by gravitational radiation decrease with the deand J=J" are satisfied within~1% error except for the
crease of rest-mass ratios. The reason is that tidal disruptiggphase in which the merged object collapses to a black hole
takes place before the orbital separation becomes as small asd, as a result, the grid resolution becomes too poor.
the sum of radii of two stars for the merger of unequal-mass In fully general relativistic simulations, the numerical ac-
neutron stars. The orbital separation at the tidal disruption isuracy is restricted by grid resolution and by the approximate
larger for the smaller rest-mass ratios for a fixed value of theuter boundary conditions imposed in a local wave zone. The
total rest mass of the system. This implies that the maximunesults presented here indicate that these errors are sup-
value of the compactness of binary orbit is smaller for thepressed within~1% error in our simulations in the absence
smaller rest-mass ratios, resulting in that the amount obf a black hole(In the presence of a black hole, the errors
gravitational radiation becomes smaller. increased to-10% and the computation crashed.
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FIG. 18. Evolution of the total energy and angular momentum of the system calculated k2 Bsand(2.37) (solid curve$ and that
calculated by Eqsi4.7) and (4.8) (dotted curves(a) for model M1414 andb) for model M1517.

The conservation of the angular momentum which holdsand M1616-5 in which the location of the outer boundaries
approximately in our present simulations is a necessary corwas the same as that for M1616-3, but the grid spacings were
dition for studying the formation of disks and a hypermas-about 5/6 and 5/4 times, respectively, that for M1616-3. A
sive neutron star supported by centrifugal force, and the finadimulation for model M1414-2 was performed to clarify
value of g of a black hole. The results here indicate theweak dependence of gravitational waveforms from quasiperi-

reliability of the numerical results on the formation of disks gic oscillations of a hypermassive neutron star on the value
and hypermassive neutron stars, and on determination of thg |

final value ofq presented in Secs. IVB and IV C.

1. Convergence test with regard to grid resolution

E. Calibrations Figure 19 shows the evolution of the maximum density,

Convergence tests were performed employing modelthe central values ok and ¢, the averaged violation of the
M1616 and M1414. The test simulations were done for fiveHamiltonian constrainti [computed by Eq(2.46)], M [com-
additional models as listed in Table Il. To investigate effectsputed by Eq.(2.36], and J [computed by Eq(2.37)] for
of the location of the outer boundaries at which approximatenodels M1616-3(dotted curves M1616-4 (solid curves,
boundary conditions were imposed, the valuesLofvere  and M1616-5long-dashed curvesThis figure indicates the
changed for three levels ds/\;=0.533 (M1616), 0.425 dependence of the numerical results on the grid resolution
(M1616-2, and 0.263M1616-3 fixing the grid spacing. To for a fixed value ofL. It is found that the convergence bif
see effects with regard to the grid resolution, we also peris at first order. A likely reason is as follows: Since the
formed two additional simulations for models M1616-4 vacuum is not allowed in our hydrodynamic implementation,

04 FT T 7 = 0.4 ETT T T L B L
% 0.3 ; E 0.3 ;7 /[1 F é
Q“é 0.2 3 E 02 E J=
T E 3 0.1 ; e e e e e SR T é
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(a) (b) t / P,

FIG. 19. Time evolution of the maximum density, the central valuea aihd ¢, the averaged violation of the Hamiltonian constraint
(H), M, andJ for models M1616-3dotted curves M1616-4(solid curve$, and M1616-5long-dashed curvesin this figure, effects with
regard to the grid resolution are clarified.
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FIG. 20. The same as Fig. 19, but for models M16ddid curve$, M1616-2(dashed curvesand M1616-3long-dashed curvésin this
figure, effects with regard to the location of the outer boundaries are clarified.

we have to add an atmosphere of small density outside netier models M1616solid curve$, M1616-2(dashed curves
tron stars. In the present work, the density of the atmospherand M1616-3(long-dashed curvéso make a comparison
is ~10" " in units of k=1. As a result, a very steep density among the numerical results with the different values of
gradient appears at the stellar surface. In such a region, thgd a fixed grid spacing. It is found thép for a smaller
transport term of the hydrodynamic equations is computed ) e ofL, the merged object collapses earligi, H depends

with first-order accuracy in space. This effect seems 0 bgq \veakly on the value df, and(iii) the results for models
non-negligible in determining the global order of the ACCU~) 1116 and M1616-2 are almost identical

racy. "< . .
The angular momentum is dissipated and transported un- 1€ reason fofi) is that the magnitude of the radiation

physically by numerical effects. For the larger grid spacing,/éaction is overestimated with small valueslofTo explain

the dissipation rate is larger and, as a result, the duration dhis effect, gravitational waveforms, the radiated energy, and
the inspiral phase becomes shorter. Even in the case of tibe radiated angular momentum are shown in Fig. 21, which
best resolutionfM1616-4, the angular momentum appears indicate that the numerical results for models M1616 and
to be dissipated by~1%. This effect may be the main M1616-2 are approximately identical. This implies that with
source for the discrepancy betwegandJ’ [see Fig. 18] L=0.5\,, a convergent result may be achieved. On the other
in the late phasé—r,,=P;_, for model M1414. hand, with the smaller value @f<0.5\q, the amplitude of
gravitational waves, the radiated energy, and the radiated an-
gular momentum are overestimated. The radiated energy and
In Fig. 20, we show the same figure as that of Fig. 19 butingular momentum for model M1616-3 are about twice as

2. Convergence test with regard to L
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FIG. 21. (a) Gravitational waveformsR,,,) and accumulated energy and angular momentum of gravitational radiation for models
M1616 (solid curve$, M1616-2(dashed curvesM1616-3(long-dashed curvesand M1616-4dotted curves (b) The same as Fig. 18),
but for models M161@solid and dotted curvésnd M1616-3dashed and dotted-dashed cujva@ée solid and dashed curves denktéM
andJ/J,, and the dotted and dotted-dashed curvesAE/M, and 1-AJ/M,.
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. 2 3 of the maximum allowed rest mass of spherical neutron stars
5 1 = a black hole is formed for th&-law equation of state with
s 0 g n=1. The nondimensional angular momentum parameter of
I~ -1 , E the formed Kerr black hole is likely to be in the range be-
-2 By = tween 0.8 and 0.9.

5 0.008 FrT T T T T T T T IS Disk mass around a black hole formed after the merger
= 0.006 [ T — increases with the decrease of rest-mass ratios for a fixed
™ 0.004 = value of the total baryon rest mass of binary neutron stars. It
5 0.002 .-~ = is found that for the rest-mass ratie0.85, the disk mass

0 = o o O o o o B may be several percents of the total mass of the system if two
O -3 B neutron stars are not very compact.
- = = Disk mass around a black hole formed after the merger
0.1 E , = : k

™~ 0.05 E E decreases with the increase of the compactness of the system

3 v as E for a fixed value of the rest-mass ratio.

O(; = i B é B é —— Shape of the hypermassive neutron stars formed after the

merger depends on the rest-mass ratio of binaries. For the
(t = Tos) / Pico merger of equal-mass neutron stars, a hypermassive neutron
o star of a double core is formed. On the other hand, for the
FIG. dzz' Grlav'tat'onal ;Navef;)rmsR(ﬁ.) anld ag?‘if““'?ted erc‘j' merger of unequal-mass neutron stars, an asymmetric double
ergy and angular momentum of gravitational radiation for models. | "<\ ~tire is the outcome.
M1414 (solid curve$ and M1414-2(dashed curves .
In the hypermassive neutron stars formed after the

large as those for M1616. As a result, the orbital separatiormerger’. both nonaxisy.mmetric. and quasiradjal oscill{;\tigns
for M1616-3 decreases more rapidly than that for M1616.ar€ excited. These oscnlatlons. induce gravitational ra_dlatlon.
Moreover, the radiation reaction is not accurately computed O the case of hypermassive neutron star formation, the
for model M1616-3, so that the conservation of the angulafharacteristic frequency of gravitational waves associated
momentum §+AJ=J,) is largely violated see Fig. 2(b)]. with nonaxisymmetric oscillations rs:f.fQE, WhIC'h |s§2.2
A number of numerical simulations for the binary merger inkHz assuming thatM,~2.8M¢ . This value is slightly
full general relativity have been recently performed with Nigher than that found in the post-Newtonian simulation
<0.5\o [7,11,12. Figure 21b) warns that the gravitational [20]. This is Ilkely.due to the fact th_at the f(.)rmed. hypermas-
waveforms and the merger process in such numerical sim#Ve neutron star is more compact in our §|mulat|on in which
lations are not very reliable. general relativistic effects are.fuIIy taken' into account.
Figure 22 is the same figure as that of Fig(&2Iut for The frequ_ency of_the peak in the_: graV|tat|_onaI wave spec-
models M1414solid curves and M1414-2dashed curves tr_um associated with the nonaxisymmetric oscnl_atlon is
for which the outer boundaries are locatedLat 0.510\, h!gher for the mergers of.the smaller rest-mass ratio with a
and 0.252,, respectively. Fot—r op<P,_o, the amplitude ~ 91VEN total rest mass. This reflects the fact that the formed

of gravitational waves, the radiated energy, and the radiateE_‘yperm""SSIVe neutron stgr is more compact for mergers of
angular momentum are overestimated for the smaller valu'e Smaller rest-mass ratios. -
of L. Since the angular momentum is dissipated more rapidly . The amplitude 9f quasiradial oscillations for hypermas-
from the system, the inspiral phase is shorter and the mergef€ Neutron stars is larger for the merger of equal-mass neu-
sets in earlier for model M1414-2. This results in a phasetron stars. This is reflected in thg amplitude of gravitational
difference between gravitational waves of M1414 andVaves forRyas well as the magnitude of the peak-a2foe
M1414-2. However, fort—r ,=P,_o, the amplitude of Of Rp;.
gravitational waves, the energy luminosity, and the angular The characteristic frequency of gravitational waves asso-
momentum flux are approximately in agreement betweegiated with a quasiradial oscillation +SfQE. The oscillation
two results (besides the slight disagreement in the wavedoes not damp quickly. Thus if the cycle of gravitational
phase. This figure shows that quasiperiodic waves emittedwaves could be accumulated using a theoretical template, the
from oscillating hypermassive neutron stars is calculated aceffective amplitude may be as large as that of the dominant
curately with our choice of, since its wavelength is short quadrupole component.
enough to compute these quantities even for the smaller The simulations were performed using a new implemen-
value ofL. tation. As a result, the accuracy of the numerical results is
significantly improved. In particular, we emphasize that the
V. SUMMARY gravitational radiation reaction is taken into account with a
good accuracy in the new implementation. We now consider
We performed fully general relativistic simulations for the that fundamental parts of the numerical implementation such
merger of binary neutron stars focusing particularly on theas those for Einstein’s evolution equation, general relativistic
unequal-mass case. The following is a summary of the scihydrodynamic equations, gauge conditions, and apparent ho-
entific results obtained in this paper. rizon finder are established well for simulating spacetimes of
If the total rest mass of the system is more than 1.7 timego black hole and for early growth of formed black holes.
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However, there are still technical issues to be solved. The It is desirable to improve the implementation for provid-
following is a list of them. ing the initial conditions. In simulations performed to this

The black hole forming region does not have good resotime, we have used quasiequilibrium states of a conformally
lution in our current computation. Consequently, computa<lat three-metric as the initial conditions for simplicity. The
tion crashed soon after formation of the apparent horizongonformal flatness approximation becomes a source of a cer-
Obviously, it is necessary to improve the grid resolutiontain systematic error when attempting to obtain realistic qua-
around the black hole forming region for longer time simu-gjequilibrium states, since the nonconformal part of the
lations. Since we have to prepare a large computational dqpree-metric is in general nonzefd7]. As a result, this ap-
main withL which is at least half of the wavelength of gravi- ,oximation introduces a systematic error on the initial con-
tational waves, using restricted computational speed anffisions and subsequent merger simulation. Since the magni-
memory, it is desi_rable to develo_p numerical techniques_suc de of the ignored terms in the conformal flatness
as the mesh refinement techniqudel] to overcome this approximation seems to be small, it is unlikely that this ef-

problem. o . . .
Gravitational waveforms are incompletely computed infect S|gn|f|cgntly changes .the result_s obtalneq in this paper.
owever, this conclusion is not entirely certain. To rule out

the case of black hole formation, since the computation h bility. it i » imulati .
crash soon after the formation of the black holes. Astraight:[ € possibility, It Is necessary to perform simulations using

forward approach to compute such gravitational waves is tQuasiequilibrium states of generic three geometries as initial
develop a black hole excision technig[#2] by which we conditions. A few formulations in which the conformal flat-
might be able to continue the simulation for a long timeNeSS is not assumed have been proposed redet@lly

duration even after formation of the black holes. An alterna-

tive approach is to extract gravitational waves from a re-

stricted spacetime data set using the so-called Lazarus tech- ACKNOWLEDGMENTS
nique[43]. Developing either of two technologies is an issue
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